

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyengr 0.0.1+ documentation

Python Notes for Engineers

This document is a collection of class notes for my official or unofficial
Python [http://python.org/] training.

The skill to program digital computers is important for modern engineers. We
routinely use computers to process data, perform numerical analysis and
simulations, and control devices. We need a programming language. In this
document, we are going to show that Python [http://python.org/] is such a good choice, and how to
use it to solve technical problems.

What Is Python?

The programming language Python was first made public in 1991 [http://en.wikipedia.org/wiki/History_of_Python]. Python is a
multi-paradigm and batteries-included programming language. It supports
imperative, structural, object-oriented, and functional programming. It
contains a wide spectrum of standard libraries, and has more than 10,000
3rd-party packages available online. The flexibility in programming paradigms
allows the users to attack a problem with a suitable approach. The versatility
of libraries further enriches our armament. Moreover, Python allows
straight-forward extension to its core implementation via the C API. The
interpreter itself can be easily incorporated into another host system.
Regarding problem-solving, Python is much more than a programming language.
It’s more like an extensible runtime environment with rich programmability.

Python [http://python.org/] is an interpreted language with a strong and dynamic typing system. In
most Unix-based computers, Python is pre-installed and one can enter its
interactive mode in a terminal:

$ python
Python 2.7.3rc2 (default, Apr 22 2012, 22:30:17)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

to perform calculation:

>>> import sys, math
>>> sys.stdout.write('%g\n' % math.pi)
3.14159
>>> sys.stdout.write('%g\n' % math.cos(45./180.*math.pi))
0.707107
>>>

Why Python?

Indeed Python is both powerful and easy-to-use. But what makes Python great
for technical applications is its compatibility to engineering and scientific
discipline. See The Zen of Python (Python Enhancement Proposal (PEP) 20) [http://www.python.org/dev/peps/pep-0020/]:

$ python -c 'import this'
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

These proverbs are the general guidelines for Python programmers. It promotes
several points favorable for engineers and scientists:

	Simplicity. Engineers and scientists want Occam’s razor [http://en.wikipedia.org/wiki/Occam’s_razor]. Simplification is our job.
We know a trustworthy solution is usually simple and beautiful.

	Disambiguation. Although expressions can differ, facts are facts.
Uncertainty is acceptable, but anything true should never be taken as false,
and vice versa.

	Practicality. Given infinite amount of time, anything can be done. For
engineers, constraints are needed to deliver meaningful products or
solutions.

	Collaboration. Not all programming languages emphasize on readability, but
Python does.

The more I write Python, the more I like it. Although there are many good
programming languages (or environments), and some can be more convenient than
Python in specific areas, only Python and its community have a value system so
close to the training I received as a computational scientist.

Idiomatic Programming

The Zen of Python is very insightful to programming Python. Breaking the Zen
means not writing “Pythonic [http://faassen.n–tree.net/blog/view/weblog/2005/08/06/0]” code. Python
programmers like to establish conventions for solving similar problems.
Programming Python is usually idiomatic. For example, when converting a
sequence of data, it is encouraged to use a list comprehension [http://docs.python.org/2/tutorial/datastructures.html#list-comprehensions]:

line = '1 2 3'
it is concise and clear if you know what's a list comprehension.
values = [float(tok) for tok in line.split()]

rather than a loop:

line = '1 2 3'
it works, but is not idiomatic to Python, i.e., not "Pythonic".
values = []
for tok in line.split():
 values.append(float(tok))

But it doesn’t mean using list comprehensions is always preferred. Consider a
list of lines:

lines = ['1 2 3\n', '4 5 6\n']
nested list comprehensions are not easy to understand.
values = [float(tok) for line in lines for tok in line.split()]
so a loop now looks more concise.
values = []
for line in lines:
 values.extend(float(tok) for tok in line.split())

Python has a good balance between freedom and discipline in coding. The
idiomatic style is a powerful weapon to create maintainable code.

Contents

This project is intended to provide introductory information about Python for
technical computing. It includes a set of documents and the corresponding code
snippets. The code is hosted at https://bitbucket.org/yungyuc/pyengr and you
can find the up-to-date documentation built at
http://pyengr.readthedocs.org/en/latest/. The project is licensed under GNU
GPLv2 [http://www.gnu.org/licenses/gpl-2.0.html].

	1. Basic Python Programming
	1.1. Start Running Python: Execution and Importation

	1.2. Package Installation

	1.3. Input, Output, and String Processing

	1.4. Execution Control

	1.5. Containers

	1.6. Object-Oriented Programming

	2. Multi-Language Programming
	2.1. Build System

	2.2. Foreign Function Interface

	2.3. Generate Code Using Cython

	2.4. Wrap C++ with Boost.Python

	2.5. Developing Python Extension Modules

	3. Managing a Python Software Project
	3.1. Basic Version Control

	3.2. Unit Tests

	3.3. Documentation

	3.4. Management of Runtime and Dependencies

	3.5. Packaging and Distribution

	4. Numerical Analysis
	4.1. Basic Array Operations

	4.2. Linear Algebra

	4.3. Fourier Analysis

	4.4. Visualization

	5. High-Performance and High-Throughput Computing
	5.1. Multi-Threaded Programming

	5.2. Distributed Computing

	6. Recipes
	6.1. Solving Partial Differential Equations

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

1. Basic Python Programming

This is a course for basic Python programming. The audience is those who want
to understand the way in which an experienced Python programmer thinks, or
those who want to be a Python expert.

In this course, you will be introduced to the most essential elements in the
Python programming language. You will be given many examples to familiarize
yourself to the practice of “one obvious way to do it”, and start to understand
the rationale behind the formality. This course will lead your way to “import
this”.

	1.1. Start Running Python: Execution and Importation
	1.1.1. Running Python

	1.1.2. Interactive Interpreter

	1.1.3. Python Script

	1.1.4. Pythonic Code and PEP8

	1.2. Package Installation
	1.2.1. Python Modules and PYTHONPATH

	1.2.2. Python Packages and Import Rules

	1.2.3. virtualenv, pip, and distribute

	1.2.4. Manual Installation

	1.3. Input, Output, and String Processing
	1.3.1. Read and Write Files

	1.3.2. Stream I/O and Files

	1.3.3. String Formatting

	1.3.4. String Tokenization, Concatenation, and Other Processing

	1.3.5. String Templating

	1.3.6. Regular Expression Interface

	1.4. Execution Control
	1.4.1. Functions

	1.4.2. Positional and Keyword Parameters

	1.4.3. Conditional Statements

	1.4.4. Looping

	1.5. Containers
	1.5.1. Sequence: list and tuple

	1.5.2. Slicing

	1.5.3. List Comprehension

	1.5.4. Iterator

	1.5.5. Set

	1.5.6. Dictionary
	1.5.6.1. Dictionary for Switch-Case

	1.5.7. Make Your Own Data Structures: Collection ABCs

	1.6. Object-Oriented Programming
	1.6.1. Organize Data with Functions

	1.6.2. Encapsulation

	1.6.3. @property

	1.6.4. Exploit Existing Types

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	1. Basic Python Programming

1.1. Start Running Python: Execution and Importation

The best learning is always from doing. As a starting point, you know how to
execute Python programs. Several basic concepts will be introduced in this
chapter, but the very first thing is to prepare a runtime.

1.1.1. Running Python

On Debian/Ubuntu.

1.1.2. Interactive Interpreter

Invoke and use the interactive environment for simple tasks.

1.1.3. Python Script

Write Python code in a file.

Use shebang and set the executable bit.

1.1.4. Pythonic Code and PEP8

The Zen of Python (Python Enhancement Proposal (PEP) 20) [http://www.python.org/dev/peps/pep-0020/]:

$ python -c 'import this'
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

When writing a Python program, it is important to write it “pythonically”.
“Pythonic” is quite a vaguely defined adjective, and it roughly means “writing
a program in the way that an experienced Python programmer feels comfortable [http://faassen.n–tree.net/blog/view/weblog/2005/08/06/0]”. Therefore,
pythonicity is not something can be taught. Instead, writing pythonic programs
needs deliberate reading and mimicking good code, which in fact is the sure
way to learn programming [http://norvig.com/21-days.html]. You will
gradually understand the Zen of Python mentioned above, and gain the
productivity enabled by pythonic programming.

Python programming is centered around “the one way to do it”. Python
encourages using a best practice to solve a problem in code. Although one can
always find many approaches to program, using more than one way to do it [http://en.wikipedia.org/wiki/There’s_more_than_one_way_to_do_it] is not
considered a friendly coding style for code readers. The one-way spirit indeed
takes away a certain amount of the diversity of our code, but give us in return
readability, maintainability, and the eventual productivity.

Perhaps using Python-specific constructs could be the easiest way to
demonstrate pythonicity. If you are familiar with C and come to learn Python,
you tend to write code like:

lst = [1, 3, 5, 2]
literals = []
i = 0
while i < len(lst):
 literals.append(str(lst[i]))
 i += 1

Because you know for has a different semantic in Python than in C, you
chose to use while. Perfectly valid but not pythonic. You can then
improve it by using for with the sequence lst:

lst = [1, 3, 5, 2]
literals = []
for it in lst:
 literals.append(str(it))

A bit better but still unpythonic. This can change by using a list
comprehension:

lst = [1, 3, 5, 2]
literals = [str(it) for it in literals]

Now the five lines of code at the beginning becomes a one-liner. Although you
might not know what’s a list comprehension, you could still guess from the
expression that the resulting literals is a list and the code involves
something about looping (because of the for). It is now pythonic.

But note, not all code using Python-specific constructs is pythonic. Although
the following version is even shorter than the previous one, it’s not really
more readable than the longer one:

literals = [str(it) for it in [1, 3, 5, 2]]

Things can be trickier if there’re nested list comprehensions:

literals = [str(it) for it in [val+10 for val in [1, 3, 5, 2]]]

It’s OK, but split it into two lines isn’t harmful either. Remember,
pythonicity is vaguely defined. Finding a quick way to “a good Python coding
style” is usually an effort of vain. Relying on the Zen of Python and constant
practicing is more rewarding.

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	1. Basic Python Programming

1.2. Package Installation

1.2.1. Python Modules and PYTHONPATH

1.2.2. Python Packages and Import Rules

Absolute and relative imports.

1.2.3. virtualenv, pip, and distribute

The easy way to install new packages. Use docutils and django as examples.

1.2.4. Manual Installation

Use NumPy as an example.

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	1. Basic Python Programming

1.3. Input, Output, and String Processing

1.3.1. Read and Write Files

1.3.2. Stream I/O and Files

1.3.3. String Formatting

1.3.4. String Tokenization, Concatenation, and Other Processing

Stripping and testing.

1.3.5. String Templating

1.3.6. Regular Expression Interface

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	1. Basic Python Programming

1.4. Execution Control

1.4.1. Functions

Yield?

1.4.2. Positional and Keyword Parameters

1.4.3. Conditional Statements

Boolean comparison and testing for singleton.

1.4.4. Looping

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	1. Basic Python Programming

1.5. Containers

1.5.1. Sequence: list and tuple

[] or list() constructs a list for you:

>>> la = []
>>> lb = list()
>>> print(la, lb)
([], [])

Some built-ins return a list:

>>> a = range(10)
>>> print(type(a), a)
(<type 'list'>, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

A tuple can also hold anything, but cannot be changed once constructed.
It can be created with () or tuple():

>>> ta = (1)
>>> print(type(ta), ta)
(<type 'int'>, 1)
>>> ta = (1,)
>>> print(type(ta), ta)
(<type 'tuple'>, (1,))
>>> ta[0] = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
 \end{lstlisting}

1.5.2. Slicing

1.5.3. List Comprehension

List comprehension is a very useful technique to construct a list from another
iterable:

>>> values = [10.0, 20.0, 30.0, 15.0]
>>> print([it/10 for it in values])
[1.0, 2.0, 3.0, 1.5]

List comprehension can even be nested:

>>> values = [[10.0, 1.0], [20.0, 2.0], [30.0, 3.0], [15.0, 1.5]]
>>> print([jt for it in values for jt in it])
[10.0, 1.0, 20.0, 2.0, 30.0, 3.0, 15.0, 1.5]

1.5.4. Iterator

Use reversed() and sorted() as examples.

Simple sort:

>>> a = [87, 82, 38, 56, 84]
>>> b = sorted(a) # b is a new list.
>>> print(b)
[38, 56, 82, 84, 87]
>>> a.sort() # this method does in-place sort.
>>> print(a)
[38, 56, 82, 84, 87]

Not-so-simple sort:

>>> a = [('a', 0), ('b', 2), ('c', 1)]
>>> print(sorted(a)) # sorted with the first value.
[('a', 0), ('b', 2), ('c', 1)]
>>> print(sorted(a, key=lambda k: k[1])) # use the second.
[('a', 0), ('c', 1), ('b', 2)]

Built-in calculation functions for iterables:

>>> values = [10.0, 20.0, 30.0, 15.0]
>>> min(values), max(it for it in values)
(10.0, 30.0)
>>> sum(values)
75.0
>>> sum(values)/len(values)
18.75

1.5.5. Set

A set holds any hashable element, and its elements are distinct:

>>> sa = {1, 2, 3}
>>> print(type(sa), sa)
(<type 'set'>, set([1, 2, 3]))
>>> print({1, 2, 2, 3}) # no duplication is possible.
set([1, 2, 3])
>>> len({1, 2, 2, 3})
3

It’s unordered:

>>> [it for it in {3, 2, 1}]
[1, 2, 3]
>>> [it for it in {3, 'q', 1}]
['q', 1, 3]
>>> 'q' < 1
False

Add elements after construction of the set:

>>> sa = {1, 2, 3}
>>> sa.add(1)
>>> sa
set([1, 2, 3])
>>> sa.add(10)
>>> sa
set([1, 2, 3, 10])

Remove elements:

>>> sa = {1, 2, 3, 10}
>>> sa.remove(5) # err with non-existing element
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 5
>>> sa.discard(2) # really discard an element
>>> sa
set([1, 10, 3])

Subset or superset:

>>> {1, 2, 3} < {2, 3, 4, 5} # not a subset
False
>>> {2, 3} < {2, 3, 4, 5} # subset
True
>>> {2, 3, 4, 5} > {2, 3} # superset
True

Union and intersection:

>>> {1, 2, 3} | {2, 3, 4, 5} # union
set([1, 2, 3, 4, 5])
>>> {1, 2, 3} & {2, 3, 4, 5} # intersection
set([2, 3])
>>> {1, 2, 3} - {2, 3, 4, 5} # difference
set([1])

A set can be used with a sequence to quickly calculate unique elements:

>>> data = [1, 2.0, 0, 'b', 1, 2.0, 3.2]
>>> sorted(set(data))
[0, 1, 2.0, 3.2, 'b']

But there’s a problem: It doesn’t support unhashable objects:

>>> data = [dict(a=200), 1, 2.0, 0, 'b', 1, 2.0, 3.2]
>>> set(data)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'

Read the Python Cookbook for a solution :-)

1.5.6. Dictionary

A dict stores any number of key-value pairs. It is the most used
Python container since it’s everywhere for Python namespace.

>>> {'a': 10, 'b': 20} == dict(a=10, b=20)
True
>>> da = {1: 10, 2: 20} # any hashable can be a key
>>> da[1] + da[2]
30
>>> class SomeClass(object):
... pass
...
>>> print(type(SomeClass().__dict__))
<type 'dict'>

To test whether something is in a dictionary or not:

>>> da = {1: 10, 2: 20}
>>> 3 in da
False

Access a key-value pair:

>>> da[3] # it fails for 3 is not in the dictionary
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 3
>>> print(da[3] if 3 in da else 30) # works but wordy
30
>>> da.get(3, 30) # it's the way to go
30
>>> da # indeed we don't have 3 as a key
{1: 10, 2: 20}
>>> da.setdefault(3, 30) # how about this?
30
>>> da # we added 3 into the dictionary!
{1: 10, 2: 20, 3: 30}

Iterating a dict automatically gives you its keys:

>>> da = {1: 10, 2: 20}
>>> ','.join('%s'%key for key in da)
'1,2'
>>> ','.join('%d'%da[key] for key in da)
'10,20'

items() and iteritems() give you both key and value at once:

>>> da.items() # returns a list
[(1, 10), (2, 20)]
>>> type(da.iteritems()) # returns an iterator
<type 'dictionary-itemiterator'>
>>> ','.join('%s:%s'%(key, value) for key, value in da.iteritems())
'1:10,2:20'

A dictionary view changes with the dictionary:

>>> da = {1: 10, 2: 20}
>>> daiit = da.iteritems() # an iterator
>>> type(daiit)
<type 'dictionary-itemiterator'>
>>> davit = da.viewitems() # a view object
>>> davit
dict_items([(1, 10), (2, 20)])
>>> da[3] = 30 # change the dictionary
>>> ','.join('%s:%s'%(key, value) for key, value in daiit)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in <genexpr>
RuntimeError: dictionary changed size during iteration
>>> ','.join('%s:%s'%(key, value) for key, value in davit)
'1:10,2:20,3:30'

1.5.6.1. Dictionary for Switch-Case

1.5.7. Make Your Own Data Structures: Collection ABCs

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	1. Basic Python Programming

1.6. Object-Oriented Programming

1.6.1. Organize Data with Functions

1.6.2. Encapsulation

1.6.3. @property

1.6.4. Exploit Existing Types

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

2. Multi-Language Programming

	2.1. Build System

	2.2. Foreign Function Interface

	2.3. Generate Code Using Cython

	2.4. Wrap C++ with Boost.Python
	2.4.1. Create a Python Extension

	2.4.2. Wrap a Class

	2.4.3. Provide Docstrings

	2.4.4. Share Instances between C++ and Python

	2.4.5. Method Overloading

	2.4.6. Irregular Arguments

	2.4.7. Call Back to Python

	2.5. Developing Python Extension Modules

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	2. Multi-Language Programming

2.1. Build System

If you want to use Python with other programming languages, a build system is
usually needed. A build system is used to automate the processes of
compiling, linking, packaging, and deploying software [http://en.wikipedia.org/wiki/Build_automation]. This chapter will focus on
a tool called SCons [http://www.scons.org/], which is implement with pure
Python. Building scripts of SCons can be highly modularized and reused, and
cross-platform as well.

Using a build system involves writing building scripts. Building scripts of
SCons can have three parts:

	Front-end script (SConstruct),

	Rule script (Sconscript), and

	Tools (site_scons/site_tools/*).

Below is the SConstruct and the SConscript files of an example project.
The SConstruct file is:

The SConscript file is:

SCons tools provide a means to reuse the building code. For example, we can
use the SCons tools provided by the Cython team [https://github.com/cython/cython/tree/master/Tools/site_scons/site_tools]
to build your cython code, by copying the files cython.py and pyext.py
into the directory site_scons/site_tools inside your project.

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	2. Multi-Language Programming

2.2. Foreign Function Interface

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	2. Multi-Language Programming

2.3. Generate Code Using Cython

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	2. Multi-Language Programming

2.4. Wrap C++ with Boost.Python

Boost [http://www.boost.org/] is a high-quality, widely-used, open-source
C++ library. Boost.Python [http://www.boost.org/doc/libs/1_55_0/libs/python/doc/index.html] is one
component project that provides a comprehensive wrapping capabilities between
C++ and Python. By using Boost.Python, one can easily create a Python
extension module [https://docs.python.org/2/extending/index.html] with C++.

2.4.1. Create a Python Extension

The basic and the most important feature of Boost.Python is to help writing
Python extension modules by using C++.

This is our first Python extension module by Boost.Python; call it zoo.cpp:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	/*
 * This inclusion should be put at the beginning. It will include <Python.h>.
 */
#include <boost/python.hpp>
#include <string>

/*
 * This is the C++ function we write and want to expose to Python.
 */
const std::string hello() {
 return std::string("hello, zoo");
}

/*
 * This is a macro Boost.Python provides to signify a Python extension module.
 */
BOOST_PYTHON_MODULE(zoo) {
 // An established convention for using boost.python.
 using namespace boost::python;

 // Expose the function hello().
 def("hello", hello);
}

// vim: set ai et nu sw=4 ts=4 tw=79:

It simply return a string from C++ to Python. Boost.Python will do all the
conversion and interfacing for us:

	1
2
3
4
5
6
7

	import zoo
In zoo.cpp we expose hello() function, and it now exists in the zoo module.
assert 'hello' in dir(zoo)
zoo.hello is a callable.
assert callable(zoo.hello)
Call the C++ hello() function from Python.
print zoo.hello()

Running the above script (call it visit_zoo.py) will get:

hello, zoo

The following makefile will help us build the module (and run it):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	CC = g++
PYLIBPATH = $(shell python-config --exec-prefix)/lib
LIB = -L$(PYLIBPATH) $(shell python-config --libs) -lboost_python
OPTS = $(shell python-config --include) -O2

default: zoo.so
	@python ./visit_zoo.py

zoo.so: zoo.o
	$(CC) $(LIB) -Wl,-rpath,$(PYLIBPATH) -shared $< -o $@

zoo.o: zoo.cpp Makefile
	$(CC) $(OPTS) -c $< -o $@

clean:
	rm -rf *.so *.o

.PHONY: default clean

2.4.2. Wrap a Class

Expose a class Animal from C++ to Python:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

	/*
 * This inclusion should be put at the beginning. It will include <Python.h>.
 */
#include <boost/python.hpp>
#include <cstdint>
#include <string>
#include <vector>
#include <boost/utility.hpp>
#include <boost/shared_ptr.hpp>

/*
 * This is the C++ function we write and want to expose to Python.
 */
const std::string hello() {
 return std::string("hello, zoo");
}

/*
 * Create a C++ class to represent animals in the zoo.
 */
class Animal {
public:
 // Constructor. Note no default constructor is defined.
 Animal(std::string const & in_name): m_name(in_name) {}
 // Copy constructor.
 Animal(Animal const & in_other): m_name(in_other.m_name) {}
 // Copy assignment.
 Animal & operator=(Animal const & in_other) {
 this->m_name = in_other.m_name;
 return *this;
 }

 // Utility method to get the address of the instance.
 uintptr_t get_address() const {
 return reinterpret_cast<uintptr_t>(this);
 }

 // Getter of the name property.
 std::string get_name() const {
 return this->m_name;
 }
 // Setter of the name property.
 void set_name(std::string const & in_name) {
 this->m_name = in_name;
 }

private:
 // The only property: the name of the animal.
 std::string m_name;
};

/*
 * This is a macro Boost.Python provides to signify a Python extension module.
 */
BOOST_PYTHON_MODULE(zoo) {
 // An established convention for using boost.python.
 using namespace boost::python;

 // Expose the function hello().
 def("hello", hello);

 // Expose the class Animal.
 class_<Animal>("Animal",
 init<std::string const &>())
 .def("get_address", &Animal::get_address)
 .add_property("name", &Animal::get_name, &Animal::set_name)
 ;
}

// vim: set ai et nu sw=4 ts=4 tw=79:

The script changes to:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import zoo
In zoo.cpp we expose hello() function, and it now exists in the zoo module.
assert 'hello' in dir(zoo)
zoo.hello is a callable.
assert callable(zoo.hello)
Call the C++ hello() function from Python.
print zoo.hello()

Create an animal.
animal = zoo.Animal("dog")
The Python object.
print animal
Use the exposed method to show the address of the C++ object.
print "The C++ object is at 0x%016x" % animal.get_address()
Use the exposed property accessor.
print "I see a \"%s\"" % animal.name
animal.name = "cat"
print "I see a \"%s\"" % animal.name

The output is:

hello, zoo
<zoo.Animal object at 0x102437890>
The C++ object is at 0x00007fb0c860ac20
I see a "dog"
I see a "cat"

2.4.3. Provide Docstrings

2.4.4. Share Instances between C++ and Python

2.4.5. Method Overloading

2.4.6. Irregular Arguments

	http://www.boost.org/doc/libs/1_55_0/libs/python/doc/v2/args.html

	http://www.boost.org/doc/libs/1_55_0/libs/python/doc/v2/def.html

2.4.7. Call Back to Python

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	2. Multi-Language Programming

2.5. Developing Python Extension Modules

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

3. Managing a Python Software Project

	3.1. Basic Version Control
	3.1.1. Initialization
	3.1.1.1. Install

	3.1.1.2. Configure

	3.1.1.3. Initialize a New Repository

	3.1.1.4. Repository File Layout

	3.1.2. Basic Concepts
	3.1.2.1. Graph of Changes

	3.1.2.2. Using the Help System of Mercurial

	3.1.3. Commit
	3.1.3.1. Adding New Files

	3.1.3.2. Modification of Files

	3.1.3.3. The Simplest Work Flow

	3.1.4. Ignorance

	3.1.5. Publish to Bitbucket

	3.1.6. Mercurial Queue
	3.1.6.1. Create a Patch

	3.1.6.2. Incremental Change

	3.1.6.3. Popping and Pushing Patches

	3.1.6.4. Finalization

	3.1.7. Other Topics

	3.2. Unit Tests

	3.3. Documentation
	3.3.1. Start a Sphinx Project with sphinx-quickstart

	3.3.2. Results of sphinx-quickstart

	3.3.3. Build the Document Project to HTML

	3.3.4. reStructuredText

	3.3.5. Documenting Python

	3.3.6. Mathematical Formula

	3.3.7. Using Third-Party Extensions (Optional)

	3.4. Management of Runtime and Dependencies

	3.5. Packaging and Distribution

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	3. Managing a Python Software Project

3.1. Basic Version Control

For code development, the history is of the same importance as the end
results. As such we need a version control system (VCS) to help tracking the
history. There are many VCS available, and here we will introduce one of the
most powerful systems: Mercurial [http://mercurial.selenic.com/] (hg [http://mercurial.selenic.com/], which is also used for the development of
Python).

In this session, you will learn the basic of managing source code with the VCS
tool Mercurial. We will cover the following topics:

	Initialization

	Basic Concepts

	Commit

	Ignorance

	Publish to Bitbucket

	Mercurial Queue

When coming to this course, please prepare yourself a laptop with Internet
connection, preferably running Ubuntu/Debian. If you are using Windows or Mac,
you are on your own for installing required software.

3.1.1. Initialization

Mercurial is categorized as a decentralised VCS (DVCS). “Decentralised” means
everyone in a collaborative team can maintain standalone development history,
and synchronize it when necessary. The separation of tracking and
synchronization makes the applications of the system broader than those of
conventional centralised VCS.

3.1.1.1. Install

On a Debian/Ubuntu, the following command installs Mercurial for you:

$ sudo apt-get install mercurial

The command line hg should be available for you to use:

$ hg version
Mercurial Distributed SCM (version 2.2.2)
(see http://mercurial.selenic.com for more information)

Copyright (C) 2005-2012 Matt Mackall and others
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Note

Because the command line is named hg, often we use it to refer to
Mercurial.

3.1.1.2. Configure

By default, Mercurial reads ~/.hgrc for configuration. Before any action,
we need to at least add the following setting into the configuration file:

	1
2

	[ui]
username = Your Name <your@email.address>

Mercurial has to be told who is working on repositories, so that it can record
correct information. Note the uesrname here is arbitrary. It doesn’t need to
be the same as any of your local or online credential, but it’s good to set to
a consistent value in all your environments.

In this course we also add the following setting:

	1
2

	[diff]
git = True

to use the diff format that’s compatible to another popular VCS Git.

3.1.1.3. Initialize a New Repository

To this point we are ready to initialize our first Mercurial repository:

	1
2
3
4
5

	$ hg init proj; ls -al
total 12
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:06 ./
drwxrwxr-x 7 yungyuc yungyuc 4096 Jun 5 06:06 ../
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:06 proj/

3.1.1.4. Repository File Layout

A repository is the database that Mercurial stores history to. In the
project we just created, the repository is in the subdirectory .hg/ of
proj/:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	$ ls -al proj/
total 12
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:06 ./
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:34 ../
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:06 .hg/
$ ls -al proj/.hg/
total 20
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:06 ./
drwxrwxr-x 3 yungyuc yungyuc 4096 Jun 5 06:06 ../
-rw-rw-r-- 1 yungyuc yungyuc 57 Jun 5 06:06 00changelog.i
-rw-rw-r-- 1 yungyuc yungyuc 33 Jun 5 06:06 requires
drwxrwxr-x 2 yungyuc yungyuc 4096 Jun 5 06:06 store/

As you can see, a Mercurial repository is nothing more than a directory named
.hg/ containing some data. Tracking (or managing) a software project with
Mercurial pretty much is changing the .hg/ directory, and we don’t do it
by hands, but by the convenient tools of Mercurial, specifically, the hg
command line.

3.1.2. Basic Concepts

There are some fundamental concepts we need to remember before using
Mercurial:

	Working copy: it’s basically the working directory of everything are you
tracking in the project.

	Changeset: the difference between two tracked revision of the working copy
(directory).

	Repository: where we store the changesets.

3.1.2.1. Graph of Changes

The following figure shows the graphical representation (directed acyclic
graph, DAG) of a Mercurial repository:

[image: digraph changesets { rankdir=LR; "c0 (root)" -> c1 -> c2 -> c3 -> c5; "c0 (root)" -> c4 -> c5; }]

Changesets in a repository

In the figure each node represents a changeset, and c0 is the root. Every
repository can have one and only one root. Because the root is the first
“change” in the repository, the repository we just initialized has no root:

	1
2
3

	$ hg log
$ hg id
000000000000 tip

3.1.2.2. Using the Help System of Mercurial

As you can see, there’s nothing after hg log, and the “tip” id (the latest
changeset in a repository) is null. You can find more information about the
command by using hg help:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

	$ hg help log
hg log [OPTION]... [FILE]

aliases: history

show revision history of entire repository or files

 Print the revision history of the specified files or the entire project.

 If no revision range is specified, the default is "tip:0" unless --follow
 is set, in which case the working directory parent is used as the starting
 revision.

 File history is shown without following rename or copy history of files.
 Use -f/--follow with a filename to follow history across renames and
 copies. --follow without a filename will only show ancestors or
 descendants of the starting revision.

 By default this command prints revision number and changeset id, tags,
 non-trivial parents, user, date and time, and a summary for each commit.
 When the -v/--verbose switch is used, the list of changed files and full
 commit message are shown.

 Note:
 log -p/--patch may generate unexpected diff output for merge
 changesets, as it will only compare the merge changeset against its
 first parent. Also, only files different from BOTH parents will appear
 in files:.

 Note:
 for performance reasons, log FILE may omit duplicate changes made on
 branches and will not show deletions. To see all changes including
 duplicates and deletions, use the --removed switch.

 See "hg help dates" for a list of formats valid for -d/--date.

 See "hg help revisions" and "hg help revsets" for more about specifying
 revisions.

 See "hg help templates" for more about pre-packaged styles and specifying
 custom templates.

 Returns 0 on success.

options:

 -f --follow follow changeset history, or file history across
 copies and renames
 -d --date DATE show revisions matching date spec
 -C --copies show copied files
 -k --keyword TEXT [+] do case-insensitive search for a given text
 -r --rev REV [+] show the specified revision or range
 --removed include revisions where files were removed
 -u --user USER [+] revisions committed by user
 -b --branch BRANCH [+] show changesets within the given named branch
 -P --prune REV [+] do not display revision or any of its ancestors
 -p --patch show patch
 -g --git use git extended diff format
 -l --limit NUM limit number of changes displayed
 -M --no-merges do not show merges
 --stat output diffstat-style summary of changes
 --style STYLE display using template map file
 --template TEMPLATE display with template
 -I --include PATTERN [+] include names matching the given patterns
 -X --exclude PATTERN [+] exclude names matching the given patterns
 --mq operate on patch repository
 -G --graph show the revision DAG

[+] marked option can be specified multiple times

use "hg -v help log" to show more info

3.1.3. Commit

Let’s make the first commit:

	1
2
3
4
5
6
7
8
9

	$ touch file_a
$ hg add file_a
$ hg ci -m "Initial commit."
$ hg log
changeset: 0:2fee2d78ec72
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sat Jun 15 20:52:23 2013 +0800
summary: Initial commit.

Mercurial command-line is very smart and knows how to shorthand commands. hg
ci is equivalent to hg commit. “Commit” means to “take the difference
between the current revision and the working copy and store the difference in
the repository as a new changeset”. Therefore after the commit you have a new
changeset. If you want to see what files are in each of the changesets, use
hg log --stat:

	1
2
3
4
5
6
7
8
9

	$ hg log --stat
changeset: 0:2fee2d78ec72
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sat Jun 15 20:52:23 2013 +0800
summary: Initial commit.

 file_a | 0
 1 files changed, 0 insertions(+), 0 deletions(-)

3.1.3.1. Adding New Files

When we make new files in the working copy, by default Mercurial doesn’t track
them. For example, let’s make several empty files:

	1
2
3
4
5

	$ touch file_b file_c file_d
$ hg ci -m "This commit won't work."
nothing changed
$ ls
file_a file_b file_c file_d

See? hg ci doesn’t allow us to commit a changeset because it thinks
“nothing changed”, but indeed there are three new files file_b, file_c,
and file_d. It becomes clear that Mercurial doesn’t “know” these new files
when we use the hg st (status) command:

	1
2
3
4

	$ hg st
? file_b
? file_c
? file_d

The question marks (?) indicate those files are not tracked by Mercurial.
We need to hg add them:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	$ hg add file_b file_c file_d
yungyuc@hayate:~/work/writing/pyengr/tmp/proj
$ hg st
A file_b
A file_c
A file_d
yungyuc@hayate:~/work/writing/pyengr/tmp/proj
$ hg ci -m "Add three more files."
$ hg log --stat
changeset: 1:7fb98d36f680
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:04:51 2013 +0800
summary: Add three more files.

 file_b | 0
 file_c | 0
 file_d | 0
 3 files changed, 0 insertions(+), 0 deletions(-)

changeset: 0:2fee2d78ec72
user: yungyuc <yyc@solvcon.net>
date: Sat Jun 15 20:52:23 2013 +0800
summary: Initial commit.

 file_a | 0
 1 files changed, 0 insertions(+), 0 deletions(-)

3.1.3.2. Modification of Files

Mercurial will detect the changed contents of tracked files. Let’s try it with
some change:

	1

	$ echo "Some texts." >> file_a

hg st knows file_a is changed (see the M in front of file_a):

	1
2

	$ hg st
M file_a

And you can check the difference by hg diff:

	1
2
3
4
5
6

	$ hg diff
diff --git a/file_a b/file_a
--- a/file_a
+++ b/file_a
@@ -0,0 +1,1 @@
+Some texts.

Finally we can commit:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	$ hg ci -m "Change file_a."
$ hg log
changeset: 2:35f496a1ff0b
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:27:45 2013 +0800
summary: Change file_a.

changeset: 1:7fb98d36f680
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:04:51 2013 +0800
summary: Add three more files.

changeset: 0:2fee2d78ec72
user: yungyuc <yyc@solvcon.net>
date: Sat Jun 15 20:52:23 2013 +0800
summary: Initial commit.

3.1.3.3. The Simplest Work Flow

After learning to commit files, you basically can use Mercurial to track
anything. The general procedure is:

	Initialize a repository by hg init name to start a project.

	Create some blank files, hg add file1 file2 ..., and
hg ci -m "Commit log message."

	Edit the files and hg ci -m "Some meaningful commit logs." the
changeset.

	Continue with steps 1–3.

Mercurial discourages editing history, so even with some
history-changing functionalities (like MQ), you cannot easily change what
you’ve committed. Your repository is a pretty safe strongbox for your work.

3.1.4. Ignorance

When adding a bunch of files to a repository, sometimes we are lazy and do
something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	$ touch file_1 file_2 file_3 file_4 generated
$ hg add
adding file_1
adding file_2
adding file_3
adding file_4
adding generated
$ hg st
A file_1
A file_2
A file_3
A file_4
A generated

Assume generated is a file generated form a script. We don’t want to track
it since it changes every time when we run the script. One way to do it is to
be explicit when adding:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	$ hg revert .
forgetting file_1
forgetting file_2
forgetting file_3
forgetting file_4
forgetting generated
$ hg add file_[1-4]
yungyuc@hayate:~/work/writing/pyengr/tmp/proj
$ hg st
A file_1
A file_2
A file_3
A file_4
? generated

It resolves the issue, but with two drawbacks:

	Now we can’t be lazy any more.

	hg st says it doesn’t know about generated, about which we don’t
care.

Mercurial provides an ignore file to better solve this problem. Let’s add
.hgignore into the repository:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	$ echo "syntax: glob
> generated" > .hgignore
$ hg st
A file_1
A file_2
A file_3
A file_4
? .hgignore
$ hg add .hgignore
$ hg st
A .hgignore
A file_1
A file_2
A file_3
A file_4
$ hg ci -m "Add ignorance." .hgignore
$ hg ci -m "Add 4 empty files."
$ hg log --stat -l 2
changeset: 4:06dacab043bf
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:18 2013 +0800
summary: Add 4 empty files.

 file_1 | 0
 file_2 | 0
 file_3 | 0
 file_4 | 0
 4 files changed, 0 insertions(+), 0 deletions(-)

changeset: 3:871d0c94b01e
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:02 2013 +0800
summary: Add ignorance.

 .hgignore | 2 ++
 1 files changed, 2 insertions(+), 0 deletions(-)

A real example of .hgignore can be found at
https://bitbucket.org/yungyuc/pyengr/src/tip/.hgignore.

3.1.5. Publish to Bitbucket

Bitbucket is a online hosting service for Mercurial (and Git, which I ignore
here). We can push our local repository to Bitbucket (or BB in short) to make
it available to the world (a public BB repository) or a selected group of
people (a private BB repository).

To proceed, you need an account at Bitbucket. It’s free. After having the
account, you can create a repository:

[image: _images/BB_create_repo.png]

Click the “Create repository” button and we are ready to go. If you have added
your SSH key to BB, you can push your local changes to BB with it:

	1
2
3
4
5
6
7

	$ hg push ssh://hg@bitbucket.org/yungyuc/example_proj
pushing to ssh://hg@bitbucket.org/yungyuc/example_proj
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 5 changesets with 10 changes to 9 files

Note

Of course you need to replace
ssh://hg@bitbucket.org/yungyuc/example_proj with the repository you
created. And if you haven’t set a SSH key at BB, you will need to use the
HTTP protocol to communicate with your BB repository:
https://username@bitbucket.org/username/example_proj (replace
username with your BB user name).

After pushing the changes, you should see the front page of your BB repository
like:

[image: _images/BB_changes_pushed.png]

Clicking “Commits” will bring us to a page to view a graphical history of the
commits:

[image: _images/BB_commits.png]

Since we’ve made the BB repository public, everyone in the world can
collaborate on it.

3.1.6. Mercurial Queue

Mercurial Queue is often called “mq”. mq is an important feature of Mercurial,
but it is implemented as an “extension [http://mercurial.selenic.com/wiki/UsingExtensions]”. To enable it, edit
your ~/.hgrc and add the following lines:

	1
2

	[extensions]
hgext.mq=

Note that if there is already a section named [extensions], don’t repeat it
and just add the second line hgext.mq= to your setting file ~/.hgrc.

Mercurial queue is a tool for us to manage “patches”. The extension was
inspired by quilt [http://savannah.nongnu.org/projects/quilt] and seamlessly
integrated into Mercurial. Because Mercurial discourage modification of
history, mq is the answer for history-editing actions. Mercurial queue allows
us to systematically change what has been committed into a repository, and we
fully understand we are changing the history, because mq uses a different set
of commands.

After enable the extension, you will have a bunch of new commands: qnew,
qref, qpush, qpop, qfin, and several others.

3.1.6.1. Create a Patch

Use hg qnew to create a new patch:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	$ hg qnew test -m "Patch for testing."
$ hg log -l 3
changeset: 5:860f045d5a1a
tag: qbase
tag: qtip
tag: test
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 23 18:00:30 2013 +0800
summary: Patch for testing.

changeset: 4:06dacab043bf
tag: qparent
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:18 2013 +0800
summary: Add 4 empty files.

changeset: 3:871d0c94b01e
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:02 2013 +0800
summary: Add ignorance.

The first argument after hg qnew command is the patch name. In this
example we created a patch named “test”. As we saw in the output of hg
log, a mq patch is nothing more than a regular changeset! But since it’s a
“patch”, there must be something distinguish it from a regular changeset, isn’t
it?

	1
2
3
4

	$ cat .hg/patches/test
HG changeset patch
Parent 06dacab043bf1beb5d01f20c5d127341d980c4b8
Patch for testing.

Here’s the difference: mq maintains a directory .hg/patches for all patches
belonging to a “Mercurial queue”. Each patch is a file in the directory with
the file name set to the patch name.

When creating a new patch without any change in the working copy, you will get
an empty patch like the “test” patch we made. If we qnew a patch with
existing modification in the working copy, the modification will be
incorporated into the patch:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	$ echo "some text" >> file_1
yungyuc@hayate:~/work/writing/pyengr/tmp/proj
$ hg qnew modify -m "Create a patch with some modification in working copy."
yungyuc@hayate:~/work/writing/pyengr/tmp/proj
$ hg qdiff
diff --git a/file_1 b/file_1
--- a/file_1
+++ b/file_1
@@ -0,0 +1,1 @@
+some text
$ hg log -l 4
changeset: 6:efbbac003006
tag: modify
tag: qtip
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 23 18:17:01 2013 +0800
summary: Create a patch with some modification in working copy.

changeset: 5:860f045d5a1a
tag: qbase
tag: test
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 23 18:00:30 2013 +0800
summary: Patch for testing.

changeset: 4:06dacab043bf
tag: qparent
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:18 2013 +0800
summary: Add 4 empty files.

changeset: 3:871d0c94b01e
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:02 2013 +0800
summary: Add ignorance.

3.1.6.2. Incremental Change

mq allows us to slowly cook a changeset, i.e., a patch. We can modify the
working copy bit by bit, and save the changes into the patch. At the beginning
only file_1 was changed:

	1
2
3

	$ hg qdiff --stat
 file_1 | 1 +
 1 files changed, 1 insertions(+), 0 deletions(-)

Let’s make more change:

	1
2
3
4

	$ echo "some other code" > file_3
$ hg diff --stat
 file_3 | 1 +
 1 files changed, 1 insertions(+), 0 deletions(-)

Use hg qref to “refresh” the patch. After the refreshment, the
modification is moved from the working copy to the patch:

	1
2
3
4
5
6

	$ hg qref
$ hg diff --stat
$ hg qdiff --stat
 file_1 | 1 +
 file_3 | 1 +
 2 files changed, 2 insertions(+), 0 deletions(-)

3.1.6.3. Popping and Pushing Patches

A committed changeset can’t be easily changed. In fact, it’s nearly impossible
to do it without the mq extension in Mercurial. The “obvious” way to change
history in Mercurial is mq.

Right now we have two patches applied in our repository:

	1
2
3

	$ hg qapp
test
modify

The first applied patch is “test”, while the second is “modify”. Since they
are patches, we can unapply and reapply them. And we do that with hg qpop
and hg qpush commands, respectively.

Although it is Mercurial “queue”, it actually operates like a stack, and we can
pop and push patches from and to a mq. Let’s pop the last patch for
demonstration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	$ hg qpop
popping modify
now at: test
$ hg qapp
test
$ hg log -l 2
changeset: 5:860f045d5a1a
tag: qbase
tag: qtip
tag: test
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 23 18:00:30 2013 +0800
summary: Patch for testing.

changeset: 4:06dacab043bf
tag: qparent
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:18 2013 +0800
summary: Add 4 empty files.

And then push it back:

	1
2
3

	$ hg qpush
applying modify
now at: modify

We can also pop or push everything at once:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	$ hg qpop -a
popping modify
popping test
patch queue now empty
$ hg qpush -a
applying test
patch test is empty
applying modify
now at: modify
$ hg qapp
test
modify

3.1.6.4. Finalization

After a series of hack, we will turn the patches in a mq back into regular
changesets. We will do it by using hg qfin command:

	1
2

	$ hg qfin
abort: no revisions specified

One common mistake in using the command is forgetting to specify the patch to
finish. By default hg qfin doesn’t finish all patches, so that we can
selectively finish one:

	1
2
3
4
5
6

	$ hg qser
test
modify
$ hg qfin test
$ hg qser
modify

Alternatively, we can also finish all patches at once:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	$ hg qfin -a
$ hg qser
$ hg log -l 3
changeset: 6:be3db2f671d5
tag: tip
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 23 18:33:01 2013 +0800
summary: Create a patch with some modification in working copy.

changeset: 5:4e435afd759f
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 23 18:25:29 2013 +0800
summary: Patch for testing.

changeset: 4:06dacab043bf
user: yungyuc <yyc@solvcon.net>
date: Sun Jun 16 16:47:18 2013 +0800
summary: Add 4 empty files.

Note that when a patch is applied in a repository, Mercurial won’t let you
push, until now:

	1
2
3
4
5
6
7

	$ hg push ssh://hg@bitbucket.org/yungyuc/example_proj
pushing to ssh://hg@bitbucket.org/yungyuc/example_proj
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 2 changesets with 2 changes to 2 files

3.1.7. Other Topics

This is a basic tutorial to version control and Mercurial. There are several
important topics that we haven’t touched:

	Clone and pull.

	Branch (multiple heads) and merge.

	Tag.

	Multiple mq and mq repository.

We will visit them another time.

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	3. Managing a Python Software Project

3.2. Unit Tests

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	3. Managing a Python Software Project

3.3. Documentation

Documentation renders the skin of software development. Every creature needs
skin, so does software. In this session, we are going to learn how to use
Sphinx [http://sphinx-doc.org/] to write documents.

Sphinx is a general-purpose documenting system, and provides many useful
features for documenting computer programs.

To install Sphinx in Debian, execute the following command:

$ sudo apt-get install python-sphinx

3.3.1. Start a Sphinx Project with sphinx-quickstart

Sphinx provides a command to help us creating a Sphinx project template:
sphinx-quickstart. After executed, it will interactively collect
information to prepare the template. It starts with the name of your working
directory:

	1
2
3
4
5
6
7

	Welcome to the Sphinx 1.1.3 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]: sphinx_guide

We then choose to separate the source and build directories of Sphinx:

	1
2
3
4

	You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/N) [n]: y

We want the default prefixes of the template and static files:

	1
2
3
4

	Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]: _

Then fill the names of the project and author:

	1
2
3

	The project name will occur in several places in the built documentation.
> Project name: Sphinx Guide
> Author name(s): Your Name

Specify the current version and release of the project. Since we are starting
a new project, let’s use 0.0.0+ for both:

	1
2
3
4
5
6
7

	Sphinx has the notion of a "version" and a "release" for the
software. Each version can have multiple releases. For example, for
Python the version is something like 2.5 or 3.0, while the release is
something like 2.5.1 or 3.0a1. If you don't need this dual structure,
just set both to the same value.
> Project version: 0.0.0+
> Project release [0.0.0]: 0.0.0+

Choose the source file suffix to be .rst:

	1
2
3

	The file name suffix for source files. Commonly, this is either ".txt"
or ".rst". Only files with this suffix are considered documents.
> Source file suffix [.rst]: .rst

Set the top-level document to “index”:

	1
2
3
4
5

	One document is special in that it is considered the top node of the
"contents tree", that is, it is the root of the hierarchical structure
of the documents. Normally, this is "index", but if your "index"
document is a custom template, you can also set this to another filename.
> Name of your master document (without suffix) [index]: index

Opt out the epub builder (we don’t need this in our test project):

	1
2

	Sphinx can also add configuration for epub output:
> Do you want to use the epub builder (y/N) [n]: n

Many Sphinx features are implemented as Sphinx extensions. Here we will enable
autodoc and pngmath:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	Please indicate if you want to use one of the following Sphinx extensions:
> autodoc: automatically insert docstrings from modules (y/N) [n]: y
> doctest: automatically test code snippets in doctest blocks (y/N) [n]: n
> intersphinx: link between Sphinx documentation of different projects (y/N) [n]: n
> todo: write "todo" entries that can be shown or hidden on build (y/N) [n]: n
> coverage: checks for documentation coverage (y/N) [n]: n
> pngmath: include math, rendered as PNG images (y/N) [n]: y
> mathjax: include math, rendered in the browser by MathJax (y/N) [n]: n
> ifconfig: conditional inclusion of content based on config values (y/N) [n]: n
> viewcode: include links to the source code of documented Python objects (y/N) [n]: n

In Unix-like Sphinx uses make to control the document generation, and in
Windows it uses Windows batch file:

	1
2
3
4
5
6
7
8
9

	A Makefile and a Windows command file can be generated for you so that you
only have to run e.g. `make html' instead of invoking sphinx-build
directly.
> Create Makefile? (Y/n) [y]: y
> Create Windows command file? (Y/n) [y]: y
Creating file sphinx_guide/source/conf.py.
Creating file sphinx_guide/source/index.rst.
Creating file sphinx_guide/Makefile.
Creating file sphinx_guide/make.bat.

As such, we finished all steps to create a Sphinx project.

	1
2
3
4
5
6

	Finished: An initial directory structure has been created.

You should now populate your master file sphinx_guide/source/index.rst and create other documentation
source files. Use the Makefile to build the docs, like so:
 make builder
where "builder" is one of the supported builders, e.g. html, latex or linkcheck.

3.3.2. Results of sphinx-quickstart

After the above process, we will see a directory sphinx_guide in the current working directory:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	$ tree sphinx_guide/
sphinx_guide/
├── build
├── make.bat
├── Makefile
└── source
 ├── conf.py
 ├── index.rst
 ├── _static
 └── _templates

4 directories, 4 files

3.3.3. Build the Document Project to HTML

The document project is now ready to be build. Run:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	$ make -C sphinx_guide/ html
make: Entering directory `/home/yungyuc/work/writing/pyengr/examples/sphinx/stage0/sphinx_guide'
sphinx-build -b html -d build/doctrees source build/html
Making output directory...
Running Sphinx v1.1.3
loading pickled environment... not yet created
building [html]: targets for 1 source files that are out of date
updating environment: 1 added, 0 changed, 0 removed
reading sources... [100%] index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
writing additional files... genindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded.

Build finished. The HTML pages are in build/html.
make: Leaving directory `/home/yungyuc/work/writing/pyengr/examples/sphinx/stage0/sphinx_guide'

Our document is now built and placed at sphinx_guide/build/html:

$ chrome sphinx_guide/build/html/index.html

[image: _images/sphinx_just_created.png]

3.3.4. reStructuredText

reStructuredText (usually short-handed as “reST” or “rst”) is the fundamental
language that Sphinx uses for composition. The syntax of rst is designed to
extend, and Sphinx uses the syntax to support a wide range of contents.

As a beginner you can start with reading the index.rst generated by
sphinx-quickstart. It locates at sphinx_guide/source/index.rst:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	.. Sphinx Guide documentation master file, created by
 sphinx-quickstart on Sun Jul 14 14:06:36 2013.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

Welcome to Sphinx Guide's documentation!
==

Contents:

.. toctree::
 :maxdepth: 2

 python
 math

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

We won’t have enough time to cover everything in rst. In the following
sections we will demonstrate some important features of the format. You can
check reStructuredText primer (at Sphinx) [http://sphinx-doc.org/rest.html]
and reStructuredText (at docutils) [http://docutils.sourceforge.net/rst.html] for detailed description.

Before start, we will create placeholders for the materials to be added. Let’s
insert the following at the 14th line of index.rst (at the same indentation
level of :maxdepth: 2):

python
math

Also, we create the corresponding files in sphinx_guide/source directory:

$ touch python.rst math.rst

If you rebuild the document now (note, you must build the document in the
directory sphinx_guide or the Makefile will be missing), you will find
no change in HTML. It’s normal.

3.3.5. Documenting Python

Sphinx extends rst to let us use directives for documenting computer programs.
However, by default Sphinx wants to you to write documents outside the source
code, and this is what we are going to do now.

Edit the file sphinx_guide/source/python.rst and put in the following text:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	===============
Python Examples
===============

.. py:function:: one_python_function(arg1, arg2)

 This is to demonstrate how to document a Python function with Sphinx. *arg1*
 and *arg2* are the positional arguments of the function.

.. py:class:: DemonstrativeClass

 This is a Python class.

 .. py:method:: clone_myself(param)

 This is an instance method of :py:class:`DemonstrativeClass`. Assume the
 only argument *param* is a :py:class:`str`. The method returns another
 :py:class:`DemonstrativeClass` object.

 .. py:attribute:: settable_value

 This is an instance attribute. Assume it (:py:attr:`settable_value`) is
 used by :py:meth:`clone_myself`.

In the above example we used the Python domain in Sphinx [http://sphinx-doc.org/domains.html#the-python-domain]. You can build the
document and get the results (click the newly built Python Examples in the
index page):

[image: _images/sphinx_python.png]

We used the following directives:

	
.. py:function:: name(signature)

	See http://sphinx-doc.org/domains.html#directive-py:function. This directive
allows us to document a Python function.

	
.. py:class:: name[(signature)]

	See http://sphinx-doc.org/domains.html#directive-py:class. This directive
allows us to document a Python class. We can put other directives like
py:class inside it.

	
.. py:method:: name(signature)

	See http://sphinx-doc.org/domains.html#directive-py:method. This directive
allows us to document an instance method.

	
.. py:attribute:: name

	See http://sphinx-doc.org/domains.html#directive-py:attribute. This
directive allows use to document an instance attribute.

We also used the following roles [http://docutils.sourceforge.net/docs/ref/rst/roles.html] to refer to Python
objects:

	
:py:class:

	See http://sphinx-doc.org/domains.html#role-py:class. It refers to a Python
class.

	
:py:attr:

	See http://sphinx-doc.org/domains.html#role-py:attr. It refers to a Python
attribute.

	
:py:meth:

	See http://sphinx-doc.org/domains.html#role-py:meth. It refers to a Python
method.

This section is a simple introduction to documenting Python code. To write
good documents, you need to familiarize yourself with the vocabulary in the
Sphinx Python domain [http://sphinx-doc.org/domains.html#the-python-domain].

3.3.6. Mathematical Formula

Another plausible feature of Sphinx is the ability to connect to LaTeX for
mathematical formula [http://sphinx-doc.org/ext/math.html]. To use this
feature we need to install TeXLive:

$ sudo apt-get install texlive

When configuring our test project we’ve enabled the pngmath extension. Simple
put the following text in math.rst:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	====================
Mathematical Formula
====================

This is one of my favoriate formula (one-dimensional, first-order hyperbolic
partial differential equation):

.. math::
 :label: e:onedim

 \frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0

We can write virtually any mathematical expresions, like an integral:

.. math::
 :label: e:integral

 F(\omega) \cong \frac{\Delta x}{2}\left[
 g(0) + 2\sum_{n=1}^{N-2}g(x_n) + g(A) \right]

or a matrix:

.. math::
 :label: e:matrix

 A = \left[\begin{array}{ccc}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{array}\right]

All of Eqs. :eq:`e:onedim`, :eq:`e:integral`, and :eq:`e:matrix` can be
numbered and referred. Inline mathematics like :math:`e = \sum_{n=0}^{\infty}
\frac{1}{n!}` also works.

The directive and role involved are:

	
.. math::

	See http://sphinx-doc.org/ext/math.html#directive-math.

	
:math:

	See http://sphinx-doc.org/ext/math.html#role-math.

After building the document, you can get the results by clicking the
Mathematical Formula in the index page:

[image: _images/sphinx_math.png]

3.3.7. Using Third-Party Extensions (Optional)

There are a lot of extensions available to Sphinx. Some of them are organized
in https://bitbucket.org/birkenfeld/sphinx-contrib/. Here I am demonstrate how
to enable the third-party extension by using sphinx-issuetracker [https://pypi.python.org/pypi/sphinxcontrib-issuetracker].

sudo apt-get install python-sphinx-issuetracker

For this example we will use pyengr [https://bitbucket.org/yungyuc/pyengr].
You need to clone it to your local computer. Right after the extension list of
conf.py, add:

try:
 from sphinxcontrib import issuetracker
except ImportError:
 pass
else:
 extensions.append('sphinxcontrib.issuetracker')

Then add the configuration to the extension:

issuetracker settings.
issuetracker = 'bitbucket'
issuetracker_project = 'yungyuc/pyengr'

After the settings, we can use #1 or #2 to refer to the issues on
bitbucket, like: #1 [https://bitbucket.org/yungyuc/pyengr/issue/1/] and #2 [https://bitbucket.org/yungyuc/pyengr/issue/2/].

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	3. Managing a Python Software Project

3.4. Management of Runtime and Dependencies

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	3. Managing a Python Software Project

3.5. Packaging and Distribution

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

4. Numerical Analysis

	4.1. Basic Array Operations

	4.2. Linear Algebra

	4.3. Fourier Analysis
	4.3.1. Fourier Transform and Discrete Fourier Transform

	4.3.2. Example Code

	4.4. Visualization

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	4. Numerical Analysis

4.1. Basic Array Operations

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	4. Numerical Analysis

4.2. Linear Algebra

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	4. Numerical Analysis

4.3. Fourier Analysis

4.3.1. Fourier Transform and Discrete Fourier Transform

Consider the Fourier transform pair [1]:

(1)\[\newcommand{\defeq}{\buildrel {\text{def}}\over{=}}\]\[\begin{split}F(\omega) = \mathcal{F}\left\{f(t)\right\}\defeq
 \int_{-\infty}^{\infty} f(x) e^{-i2\pi\omega x} dx \\\end{split}\]

(2)\[f(x) = \mathcal{F}^{-1}\left\{F(\omega)\right\} \defeq
 \int_{-\infty}^{\infty} F(\omega) e^{i2\pi\omega x} d\omega\]

\(x\) denotes the temporal or spatial coordinate, and \(\omega\)
denotes the frequency coordinate. Equation (1)
defines the forward Fourier transform from \(f(x)\) to \(F(\omega)\).
Equation (2) defines the backward (inverse) Fourier
transform from \(F(\omega)\) to \(f(x)\).

Suppose the function \(f(x)\) can be sampled in an interval \([0, A]\)
with \(N\) discrete points of the same sub-interval \(\Delta x = A/N\)
as:

\[f_n \defeq f(x_n) = f(n\Delta x), \quad n = 0, \ldots, N-1\]

The forward discrete Fourier transform (DFT) can be defined to be:

(3)\[\tilde{F}(\frac{k}{A}) \defeq
\sum_{n=0}^{N-1} f(n\Delta x) e^{-i2\pi\frac{nk}{N}}\]

There is a relationship between \(F(\omega)\) (in Eq.
(1)) and \(\tilde{F}(k/A)\) (in Eq.
(3)), which will be derived in what follows.

Assume \(f(x) = 0\) for \(x < 0, x > A\). Equation
(1) can then be rewritten as:

(4)\[F(\omega) = \int_{0}^{A} f(x) e^{-i2\pi\omega x} dx\]

To facilitate the derivation, the integrand in Eq. (4) be
defined as:

(5)\[g(x) \defeq f(x) e^{-i2\pi\omega x}\]

Aided by the trapezoid rule and Eq. (5), the integration of
Eq. (4) can be approximated as:

(6)\[F(\omega) \cong \frac{\Delta x}{2}\left[
 g(0) + 2\sum_{n=1}^{N-2}g(x_n) + g(A) \right]\]

Assume

\[g(0) = g(A)\]

then Eq. (6) can be written as:

(7)\[F(\omega) \cong \Delta x \sum_{n=0}^{N-1}g(x_n)
= \frac{A}{N}\sum_{n=0}^{N-1} f(x_n) e^{-i2\pi\omega x_n}\]

Because the longest wave length that the sampling interval allows is \(A\),
the frequency of the fundamental mode is

(8)\[\Delta\omega = \frac{1}{A}\]

which is the spacing of the frequency-domain (\(\omega\)) grid that covers
the frequency interval \([-\Omega/2, \Omega/2]\) with \(N\) points.
Aided by using Eq. (8), it can be obtained that

\[\Omega = N\Delta\omega = \frac{N}{A}\]

and thus

(9)\[A\Omega = N\]

Because

\[\Delta x = \frac{A}{N}, \quad \Delta\omega = \frac{1}{A}\]

it can be shown that

(10)\[\Delta x\Delta\omega = \frac{1}{N}\]

Equations (9) and (10) are the
reciprocity relations.

To proceed, write

\[x_n\omega_k = (n\Delta x)(k\Delta\omega) = \frac{nA}{N}\frac{k}{A} =
\frac{nk}{N}\]

Equation (7) becomes

\[F(\frac{k}{A}) \cong \frac{A}{N}
\sum_{n=0}^{N-1} f(n\Delta x) e^{-i2\pi\frac{nk}{N}}\]

Substituting Eq. (3) into the previous equation gives:

(11)\[F(\frac{k}{A}) \cong \frac{A}{N}\tilde{F}(\frac{k}{A})\]

which defines the scaling relation between the Fourier transform (Eq.
(1)) and the discrete Fourier transform (Eq.
(3)).

4.3.2. Example Code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

	
class Transform(object):
 def __init__(self, ngrid, extent, average=False):
 from numpy import arange, empty
 from fftw3 import Plan
 self.ngrid = ngrid
 self.extent = extent
 self.interval = interval = extent[1] - extent[0]
 # calculate xgrid.
 self.xgrid = xgrid = arange(ngrid, dtype='float64')
 xgrid /= ngrid-1
 xgrid *= interval
 xgrid += extent[0]
 self.dx = dx = xgrid[1] - xgrid[0]
 # calculate bandwidth, kgrid, and kscale.
 self.bw = bw = 1.0 / dx
 self.kgrid = kgrid = arange(ngrid, dtype='float64')
 kgrid /= ngrid
 kgrid *= bw
 kgrid -= bw/2
 self.kscale = 1.0 if average else interval/2
 self.kscale /= ngrid/2
 # make x-/k-arrays.
 self.xarrw = empty(ngrid, dtype='complex128')
 self.karr = empty(ngrid, dtype='complex128')
 self.karrw = empty(ngrid, dtype='complex128')
 # make fftw plans.
 self.wforward = Plan(self.xarrw, self.karrw,
 direction='forward', flags=['estimate'])
 self.wbackward = Plan(self.karrw, self.xarrw,
 direction='backward', flags=['estimate'])

 def forward(self):
 from numpy.fft import fft, fftshift
 self.karr[:] = fftshift(fft(self.xarrw))
 self.wforward()
 self.karrw[:] = fftshift(self.karrw)
 self.karr *= self.kscale
 self.karrw *= self.kscale

 def report(self):
 import sys
 sys.stdout.write('ngrid: %d; ' % self.ngrid)
 sys.stdout.write('extent: %g, %g; ' % tuple(self.extent))
 sys.stdout.write('interval: %g; ' % self.interval)
 sys.stdout.write('dx: %g; ' % self.dx)
 sys.stdout.write('bandwidth: %g; ' % self.bw)
 sys.stdout.write('krange: %g, %g ' % (self.kgrid[0], self.kgrid[-1]))
 sys.stdout.write('\n')

class SineTransform(Transform):
 def __init__(self, ngrid, extent, freq, **kw):
 from numpy import sin, pi
 super(SineTransform, self).__init__(ngrid, extent, **kw)
 # remember the frequency.
 self.freq = freq
 # initialize x/t data.
 self.xarrw[:] = sin(2*pi * freq * self.xgrid)
 # for plotting.
 self.fig = None
 self.xax = None
 self.kax = None

 def plot(self, figsize=(12, 6)):
 from numpy import absolute
 from matplotlib import pyplot as plt
 # create the figure.
 self.fig = fig = plt.figure(figsize=figsize)
 # plot in t/x-space.
 self.xax = xax = fig.add_subplot(1, 2, 1)
 xax.plot(self.xgrid, self.xarrw.real)
 xax.set_title('N = %d' % self.ngrid)
 xax.set_xlim(self.xgrid[0], self.xgrid[-1])
 xax.set_ylim(-1.1, 1.1)
 xax.set_xlabel('t/x (s/m)')
 xax.grid()
 # plot in f/k-space.
 self.kax = kax = fig.add_subplot(1, 2, 2)
 kax.plot(self.kgrid, absolute(self.karr), label='numpy.fft.fft')
 kax.plot(self.kgrid, absolute(self.karrw), label='fftw3.plan')
 kax.set_xlim(self.kgrid[0], self.kgrid[-1])
 kax.set_xlabel('f/k (Hz/$\\frac{1}{\mathrm{m}}$')
 kax.grid()
 kax.legend()

class RectTransform(Transform):
 def __init__(self, ngrid, extent, **kw):
 from numpy import absolute, sinc
 super(RectTransform, self).__init__(ngrid, extent, **kw)
 # initialize x/t data.
 self.xarrw.fill(0)
 self.xarrw[absolute(self.xgrid) < 0.5] = 1
 self.kana = sinc(self.kgrid)
 # for plotting.
 self.fig = None
 self.xax = None
 self.kax = None

 def plot(self, figsize=(12, 6)):
 from numpy import absolute
 from matplotlib import pyplot as plt
 # create the figure.
 self.fig = fig = plt.figure(figsize=figsize)
 # plot in t/x-space.
 self.xax = xax = fig.add_subplot(1, 2, 1)
 xax.plot(self.xgrid, self.xarrw.real)
 xax.set_title('N = %d' % self.ngrid)
 xax.set_xlim(self.xgrid[0], self.xgrid[-1])
 xax.set_ylim(-0.1, 1.1)
 xax.set_xlabel('t/x (s/m)')
 xax.grid()
 # plot in f/k-space.
 self.kax = kax = fig.add_subplot(1, 2, 2)
 kax.plot(self.kgrid, absolute(self.karr), label='numpy.fft.fft')
 kax.plot(self.kgrid, absolute(self.karrw), label='fftw3.Plan')
 kax.plot(self.kgrid, absolute(self.kana), label='analytical')
 kax.set_xlim(self.kgrid[0], self.kgrid[-1])
 kax.set_xlabel('f/k (Hz/$\\frac{1}{\mathrm{m}}$')
 kax.grid()
 kax.legend()

def main():
 from matplotlib import pyplot as plt

 stfm = SineTransform(2**7, (-1.5, 1.5), 1.0, average=True)
 stfm.report()
 stfm.forward()
 stfm.plot()

 rtfm1 = RectTransform(2**5, (-1., 1.), average=True)
 rtfm1.report()
 rtfm1.forward()
 rtfm1.plot()
 rtfm2 = RectTransform(100, (-5., 5.))
 rtfm2.report()
 rtfm2.forward()
 rtfm2.plot()

 plt.show()

if __name__ == '__main__':
 main()

	
class pyengr.fourier.Fourier(ngrid, extent, average=False)

	Fourier transform pair that supports both numpy.fft and
fftw3.Plan.

	[1]	William L. Briggs and Van Emden Henson, The DFT: An Owners’ Manual for
the Discrete Fourier Transform, SIAM, 1987.
http://www.amazon.com/gp/product/0898713420/

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	4. Numerical Analysis

4.4. Visualization

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

5. High-Performance and High-Throughput Computing

	5.1. Multi-Threaded Programming

	5.2. Distributed Computing

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	5. High-Performance and High-Throughput Computing

5.1. Multi-Threaded Programming

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	5. High-Performance and High-Throughput Computing

5.2. Distributed Computing

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyengr 0.0.1+ documentation

6. Recipes

	6.1. Solving Partial Differential Equations

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyengr 0.0.1+ documentation

 	6. Recipes

6.1. Solving Partial Differential Equations

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyengr 0.0.1+ documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyengr	

 	
 	
 pyengr.fourier	

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyengr 0.0.1+ documentation

Index

 F
 | M
 | P

F

 	

 	Fourier (class in pyengr.fourier)

M

 	

 	math (directive)

 	

 	(role)

P

 	

 	py:attr (role)

 	py:attribute (directive)

 	py:class (directive)

 	

 	(role)

 	py:function (directive)

 	

 	py:meth (role)

 	py:method (directive)

 	pyengr.fourier (module)

 Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

 _images/BB_commits.png
1 yungyue/ example_praj / x

& & i [8 Atassian, Inc. [US]]https://bitbucket.org/yungyuc/example_proj/commits/all

g Bithucket ‘

example_proj

Dprme e & Clone ~ | =G Fork 3 Compare = ¢h Pull request

Overview Source Commits Pull requests Issues Wiki Downloads

Commit history | Feature branches

17 Allbranches ~ Q Find commits @

Author Commit Message Date
B Yung-YuChen osdacab Add 4 empty files an hour ago
Yung-YuChen srigecs Addignorance an hour ago

L3 o il

B vung-vu Chen 3sfasea Change file_a an hour ago
Yung-YuChen yrbsass Addthree more files 2 nours ago

L3 il

ung-YuChen ez’ Initial commi ours ago
Yung-Yu Ch Initial commit. 21 hours ag;

_images/sphinx_just_created.png
BE=

) Wetcometo Sphin Guide x __|

Z @ \D writing/pyengr/examples/sphinx/stage 1/sphinx_guide/build/html/index.h r’g\ 9 v

Sphink Guid

Table Of Contents Welcome to Sphinx Guide’s
et documentation!
Contents:

Indices and tables

Quick search

I

Enter search terms or a module,
ion name.

o Index
 Module Index
o Search Page

Sphink Guid entation »

© Copyright 2013, e, Created using Sphin 1.1.3

_images/graphviz-32221d1a5718c28d990ae7637b79260086fab193.png

_images/BB_create_repo.png
B Createa repository—Bi x

& & @ [B Atassian Inc [US]|nttps://bitbucket.org/repo/create

@ Bitbucket

Create a new repository

owner | B yungyue

Name* | example_proj

Description

Access level () Thisis a private repository

Repository type O Git
© Mercurial

Project management @ Issue tracking
Wiki

Language [Select an Option

Create reposit Cancel

Blog - Support - Documentation - APl - Sewerstatus - Versioninfo

JRA - Confluence - Bamboo - Stash

“YAtlassian

Q owner/repositary [

You can also import a repository

New to Bitbucket?

Learn the basics of using
Git and Mercurial by
exploring the Bitbucket
101

Working in a team?

Create a team account to
consolidate your repos and
organize your team's work

Terms of sewvice - Privacy policy

search.html

 Navigation

 		
 index

 		
 modules |

 		pyengr 0.0.1+ documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Yung-Yu Chen.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_images/sphinx_math.png
BE=

] Mathematical Formula

& Q @ \Dmng/pyengr/examptes/spmnx/s(age3/spmnx,gmde/bum/mmumam mm’g\ o v

Sphinx Guid: previous | index

Previous topic Mathematical Formula

Python Exam

This Page

s our

This is one of my favoriate formula (one-dimensional, first-order hyperbolic
partial differential equation)

) u | Of Q)
Quick search o Tor
| JGol e canwrite virtually any mathematical expresions, like an integral
Enter search terms or a module, N-2
class or function name. ~ Az (2)
F(w) 2 5= |9(0) +2 3 gla) +9(4)
or amatrix
an aiz a3 (3)
A ay ap ay
az azp as
Allof Egs. (1), (2), and (3) can be numbered and referred. Iniine mathemtics

like e = 3722 o 4 also works

Sphinx Guid: previous | index

opyright 2013, e, Created using Sphin 1.1.3

_images/sphinx_python.png
BE=

) Python Examptes —sphin. x __|

K (& @ [[ting/pyengr/examples/sphinx/stage2/sphinx_guide/build/ntml/python 77| & v

Sphinx Guide 0.0.0+ documentation » previous | next | index

Python Examples

Previous topic

\ phin Gu

o one_python_function(arg?, arg2)

Next topic This is to demonstrate how to document a Python function with Sphinx
ne arg1 and arg?2 are the positional arguments of the function

This Page class DemonstrativeClass
Thisis a Python class

Quick search clone_myself(param)
I This is an instance method of DemonstrativeClass. Assume the only

arqument param is a str. The method retums another

Enter search terms or a module. Demonstrativeclass object.
class or function name

settable_value
This s an instance atiribute. Assume it (settable_value) is used by
clone_myself ()

Sphinx Guide 0.0.0+ documentation » previous | next | index

oc e using Sphin 1.1.3.

_images/BB_changes_pushed.png
B yungyue/ example_proj— x

& & i [@ Atassian, Inc. [US]]https://bitbucket.org/yungyuc/example_proj/overview

g Bithucket ‘

example_proj

Dprme e & Clone ~ | =G Fork 3 Compare = ¢h Pull request

Overview Source Commits Pull requests Issues Wiki Downloads

Recent activity SSH-v | ssh://hgebi thucket..org/yungyuc /example

O . Yung-Yu Chen pushed 5 commits to yungyuc/example_proj
° anhour ago

©sdacab - Add 4 empy files. v ‘ (: *
1 1 0 1

#71decs - Add ignorance

Branch Tag Forks Watcher
35f4362 - Change file_a

Owner Yung-Yu Chen
Access level Public
2fee2d7 - Initial commit Type Mercurial

Last updated an hour ago
Yung-Yu Chen created yungyuc/example_proj Created an hour ago
anhour ago Size 4.4 KB (download)

77bs2d3 - Add three more files.

